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numerical method based on the theory of Kryloff and Bogoliuboff will now be 
apparent. 
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Integration Rules of Hypercubic Symmetry over 
a Certain Spherically Symmetric Space 

By J. N. Lyness 

Abstract. A theory of integration rules suitable for integration over a hypercube 
and having hypercubic symmetry has recently been published. In this paper it is 
found that, with minor modification, this theory may be directly applied to obtain 
integration rules of hypercubic symmetry suitable for integration over a complete 
n-dimensional space with the weight function exp( -x12-X22 - -xn2). As in 
the case of integration over hypercubes, an n-dimensional rule of degree 2t + 1 
may be constructed requiring a number of function evaluations of order 2tnt/t!, 
only. 

1. Introduction. In this paper we are interested in generalising the theory and 
results of investigations about the use of symmetric integration rules for a hyper- 
cube, given in Lyness [2] and [3] which we refer to as Part I and Part II, respec- 
tively. The particular generalization that we consider here is the construction of 
rules of the type 

L f exp[-eXp 2- x 2 2 -Xn'2]f(x1 , X2, X. Xn) dx1 dx2 ... dx 

-EAi f({li y l2iX*** n) 

Such integration rules have been considered before (Stroud and Secrest [4]). It is 
conventional to term such a rule to be a rule of degree d if the approximate equality 
may be replaced by an exact equality whenever f is a niultinomial of degree less 
than or equal to d. 

Most of the results about symmetric rules for integration over hypercubes in 
Parts I and II may be derived in almost identical form for this integral. To avoid 
unnecessary repetition, we refer to Parts I and II for the details of the derivations 
of such results; we indicate here only the differences or modifications in these re- 
sults as they occur. 
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2. The Integration Operator, I@)* We define the symmetric integration rule 
operators iR and R exactly as in Section 1 of Part I with the number a set, for con- 
venience, equal to 2. In this case, all the operator algebra connected with rules, 
such as the projection of and the extension of rules and the number of points re- 
quired by a rule, as described in Sections 2 and 3 of Part II, and in Sections 1 and 5 
of Part I, may be used quite independently of the region of integration. 

Without a definition of an integration operator and its connection with the rule 
operators, the rule formalism is of little practical value. We introduce instead of 
(I; 1.1) and (I; 1.7) an r-dimensional integration operator I(r) defined by 

1 | 
= ...f exp[-x 2 22 * - x2]f dix dx2 * dxn (2.1) i(n)f _ a 

ff f expi-x1_Xi2 - *X * - Xn 2] dx1 dx2 ... dXn 

The denominator is equal to (,) n72. 

We turn our attention to finding rules Rt which are useful approximations to 
I(r) in the sense that 

R(r)f J(r)f 

the approximation being exact at least when f is a constant function. For example, 
a possible two-dimensional rule is 

(2.2) R =2) = G(V/2, 0) 

and using the definition in Part I, we may write 

(?'.3) R(2) 1 1 0 +f - ' ) + X?-2 +f 

The corresponding integral given by (2.1) is 

(2.4) I 2 f fexp[-X2 - y2]f(X, y) dxdy 

and so, in the form of (1.1), the integration rule 6R(\/2, 0) leads to the approximate 
equality 

00 

L exp[-x2 _ y2If(X, y) dxdy 
00 

(2.5) 

(2@5)kvf 20) + f ? + f f X X 

This differs from the corresponding form for integration over a hypercube because 
of the "normalising" factor on the right-hand side. 

3. The Error Coefficients. The error expansion described itn Sections 2 and 3 of 
Part I may be carried out in the same way. In one dimension we find, by successive 
integration by parts, that an expansion of the type 

(3.1) (R(a )f-I")f- d2(a)II'1f 2) + d4(a)I ('f 4) + 
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exists, where f(r) is the rth derivative function of f. The coefficients d2r(0c) are 
termed error coefficients. We may obtain a generating function for the error co- 
efficients by inserting into (3.1) the function 

(3.2) f = 2 cosh ox. 

Carrying out the integrations analytically and setting 

(3.3) do(a) = 1, 

we find, after some rearrangement, 

(3.4) Erd2r(a)c2r = cosh -,a exp - G(a ) 

This generating function may be used to find expressions for the error coefficients, 
namely, 

(3.5) d2r(0) = (-1)r/(22rr!) 

and 
r 7 1)-8 28 

(3.6) d2r((a) = 2 E (E )!r-s) 
$.=o (2s)!(r - 8! 

A convenient expression for calculating the error coefficients is 

(3.7) d2 (a) = d2s (0) + a2 d28-2(0) + ... 
2s 

d2(0) + a dD(0) 
228 2! 2 28-2 (28 - 2)! 2! 2s_! 

in direct analogy with (I; 2.15). 
All those results in Sections 2 and 3 of Part I which do not depend on the calcu- 

lated values of c2r(a) hold for this region of integration if we replace the terms as 
indicated: 

(3.8) a2rc2r(R) d2r(R), 

(3.9) a 
2. 

In particular, the error coefficients of a composite rule, 

(3.10) R(=) _ iZ(Rti), 

are given by 

(3.11) d2r(R~')) = Etid2r(xi)j 

and the error expansion takes the form 

(3.12) R f-I(I)f = d2(R(1) )I(1)(2) + d4(R(l) )I ()f(4) + 

In Section 3 of Part I we treat the error coefficients of n-dimensional rules. We 
may derive the error expansion for an n-dimensional composite rule, 

(3.13) R = Z 3(n) 

where 

(3.14) (Ri -W(aRil, ai2 X ain)y 
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in terms of the error coefficients d2,(aii). The result is 
00 ~~~~~~~~~~~~~28 

(3.15) ft(n) (n)f _ v Sj dR(n)I d0f *3.15) 
, 
f f - 

AE E d'2s12so-2s= ZR s281, C,8228 d2snX' 

where 

(3.16) d2s1282 . 28n (R(-n) = X E d2,12. .22s, ( (Ri(n) 

and 

(3.17) d2s1282 ... 28n&R') = ( ! E d281 (caip,) d282(aiP2 ) . . d2s,, (aip,) . 

Here the integers P1, P2, , Pn are a permutation of the numbers 1, 2, * n, 
and the summation symbol indicates that we sum over all such permutations. We 
may also derive the formula for the error coefficient of the convolution product of 
one-dimensional composite rules (given by I; 3.25), which includes the important 
special case 

(3.18) d281282... 2n((R(l) ) n) = d.81(R")') d2,2(R(')) d2,(R(1)). 

4. Applications of Rule Extension. In Section 4 of Part II we introduced a set 
notation which helped to clarify the situation regarding the degrees of an s-dimen- 
sional rule R(8) and an r-dimensional rule R( ) in the case in which 

(4.1) R(r) - R(s). 

The principal result of that section is: 
THEOREM 4.2. If R(r) * R(> and R(8) is of degree 2t + 1, the degree of R(r) is at 

least 2t' + 1, where t' = min(s, t). 
The proof of this theorem rests principally on the results about rule projection 

and rule extension given in Section 2 and 3 of Part II. The dependence on the inte- 
gration operator is through equation (II; 4.2) which states 

(4.2) I(r)f(xi, X2, * * *, x.) = I(8'f(xl, x2, - - X8). 

This equation is also true if i) is defined as in Section 2 of this paper. As the theory 
of rule projection and rule extension is independent of the region of integration, it 
follows that all the results of Section 4 of Part II apply also for this integral, and, 
in particular, Theorem 4.2 is true. 

The systematic construction of high-dimensional integration rules may be 
effected by following the same procedure as described in Sections 5 to 7 of Part II. 
In the examples, the role of the Gauss-Legendre quadrature formula is taken over 
by the Gauss-Hermite quadrature formula. This is of exactly the same form, being 
a (t + 1)-point rule of degree 2t + 1, namely, 

[(t+1)/21 

(4.3) Gj1= Z i) 
o=1. 

The values of P} and O are available in the literature. (See, for example, Kopal 
[11.) 

The rules Et'(O) (Gt+l) are as before n-dimensional integration rules of degree 
2t + 1. The only difference is that different values of Di and fi are used. In the 
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example in Section 6 of Part II, where we determine E2'(0) (G3)2, we have to re- 
place (II; 6.6) and (II; 6.7) by 

(4.4) G3 = 2(3R(0) + 1(R (/6), 

(4.5) (G3)2 = 4I(O, 0) + o(R(0, -\'6) + sf(V/6, V/6). 
The expression for E2N(0) (G3)2 is the same as in (II; 6.8) and this leads to the rule 

(4.6) E2n(0)(G3)2 = [(n2 - 7n + 18){61(0)}I 

+ 2n(4 -n){(R()}In1*G(V/6) + R(n - ){ I(0)} 2*(R(V/6, V\6)], 

in direct analogy to (II; 6.9). 
The rules G(+) may be obtained in exactly the same way as in Section 7 of Part 

II. Here we have to replace (II; 7.8) by 

(4.7) X1 X2 = () 2t 

Thus 4 in (II; 7.9) is given by 

(4.8) 0 = 1/ (2132)t. 

With this adjustment the subsequent formulas and rules are valid. We find 

(4.9) G;+) = E nL1(0)(Gt+?)t-1 + 
I 

[E tn(){i(i)}t - Se -R(O){ Rt-BE . t+1 t- 
~~~~~~(2/312) t 

and 

((t) ) E= 1 + t + + t_ ) + 2t () (teven), 

(4.10) =1 + (t + 1) n) + ...+ (t + 1)t-1( n 

+ 2t (2) (t odd). 

In the example 04 n) given in (II; 7.20) the incidental parameters are different, 
though the rule is of identical form. These parameters are: 

j= (3 - /6)/6, 

2= (3 + /6)/6, 
(4.11) 012 = 2(3 + V/6), 

032 = 2(3 - /6), 

at= 1, /3k.6 

The number of points required by any of these rules is, in general, the same as that 
stated for the corresponding rule in Part II; exceptionally, the vanishing of a coeffi- 
cient of a basic rule leads to a reduction. An example of thisoccursin (4.6) above. 
There, 

v(E2(0) (G3)2) = 2n2 + 1, n = 2, 3, 5, 6, , 
(4.12) 2 ) 

=25S, n = 4, 
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the exceptional case n = 4 occurring as a result of the factor (n - 4) in the coeffi- 
cient of one of the basic rules. 

The rules G,(n) establish for this region of integration a conjecture (Thacher 
[5]). This conjecture may be stated in exactly the same form as in Section 8 of 
Part II; there exists a set of integration rules G), I +1 .** in t, t + 1, ... 

dimensions with the property 

(4.13) Lim v( G;(+))/2t () 1. 

5. Discussion. The integration rules derived above are all of the type defined 
in Section 1 of Part I; that is, they are all invariant under interchange of coordi- 
nates and the alteration of the sign of any coordinate. We refer to this type of rule 
as one having hypercubic symmetry. 

The space considered here is spherically symmetric. No advantage of this full 
symmetry has been taken in constructing these rules. Rather, we have used only the 
(much weaker) hypercubic symmetry. One might naturally expect such rules to be 
inferior or less economic in terms of function evaluations than rules derived on the 
basis of full spherical symmetry. Stroud and Secrest [4] have published rules for 
values of n and t both less than 4 which do not have hypercubic symmetry and 
which use fewer points than any corresponding rules which do have hypercubic 
symmetry. However, in the case of n > t > 4, the presently available rules derived 
using the spherical symmetry are of a product type and require v(Sp) points, 
where 

V(Sp) - (t + 1)n (t odd), 

= (t + l)y - tn + 1 (teven). 

(See Stroud and Secrest [4], Sectioii 3.) This is marginally fewer than the number 
required by the product Gaussian: 

= (t + 1) . 

However, the rules derived in the present paper, which have only hypercubic 
symmetry, require only 

v(Gtni) ,2 
(n) 

(See Eq. (4.10).) 
Thus the present situation is that the most economical rules available for this 

spherically symmetric region have only hypercubic symlmetry when n > t > 4. 
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